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a b s t r a c t

The multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) with multi-reflection solid bound-
ary conditions is used to study anisotropic permeabilities of a carbon paper gas diffusion layer (GDL) in a
fuel cell. The carbon paper is reconstructed using the stochastic method, in which various porosities and
microstructures are achieved to simulate different samples. The simulated permeability and tortuosity
show anisotropic characteristics of the reconstructed carbon papers with in-plane permeability higher
than through-plane, and in-plane tortuosity lower than through-plane. The calculated permeabilities are
in good agreement with existing measurements. The relationship between the permeability and the poros-
Lattice Boltzmann
Permeability
Gas diffusion layer
A
T

ity is fitted with empirical relations and some fitting constants are determined. Furthermore, the obtained
relationship of tortuosity and porosity is used in a fractal model for permeabilities. The results indicate
that the fractal model and the Kozeny–Carman equation provide similar predictions on the through-plane
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. Introduction

Due to their high efficiency, low pollution and low noise, pro-
on exchange membrane fuel cells (PEMFCs) have attracted much
ttention for over a decade as a promising candidate for power
ources in automotive and other portable electronic devices. A typ-
cal PEMFC consists of a polymer membrane sandwiched between
wo electrodes (anode and cathode). Each electrode can be divided
nto three regions: the bipolar plate, the gas diffusion layer (GDL)
nd the catalyst layer. In PEMFCs, fuel and oxidant are supplied
o the channels on the bipolar plate, and transfer through the gas
iffusion layer to catalyst activity sites where electrochemical reac-
ions occur. The GDL plays an important role for providing structural
upport, permeating reactant gas, removing product water and
onducting electrons. The permeation of gas and removal of liq-
id water from GDL are critical to the performance of the PEMFCs,
ecause higher reactant mass transfer rates would achieve higher
urrent densities while the accumulation of liquid water in GDL

ould block reactant transfer, thus lowering the performance [1].

herefore, the permeability of the GDL is a key parameter on the
erformance of the PEMFCs.

∗ Corresponding author. Tel.: +86 21 34206337; fax: +86 21 34206337.
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Generally, the GDL is a porous medium made of carbon paper or
arbon cloth. These materials have microscopically complex struc-
ure with random distribution of pore sizes, ranging from a few

icrons to tens of microns. In practice, in order to decrease the
esistance for the electrons transfer from the catalyst layer to the
ipolar plane, the GDL is slightly compressed by external force,
y which the permeability is reduced [2]. Experimental studies
onfirm that there exists an optimal compression for the GDL,
ttributing to the trade-off between the improved contact resis-
ance and the reduced GDL permeability [3]. Additionally, it is
elieved that treating the GDL with a hydrophobic polymer such as
TFE would improve water removal and thus facilitate gas diffusion
n the GDL. However, studies also show that electrical conductiv-
ty and permeability of the GDL are reduced if excessive PTFE is
dded [4], due to the insulating property of PTFE and the filling of
he GDL pores. Thus, finding optimal values of the GDL parameters
uch as porosity, permeability and wettability are important issues
n PEMFCs research [5–7].

Recently, a great deal of attention is given to the study of
nisotropic characteristics of the GDL, i.e., permeabilities are
ifferent in the in-plane and in the through-plane directions. Mea-

urements of through-plane permeability were performed [7,8],
nd the correlation between the through-plane permeability and
he limiting current density was studied [9]. In addition, several
tudies [10–12] indicated that in-plane permeability is more rele-
ant to PEMFCs performance, particularly for the serpentine flow

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:pingcheng@sjtu.edu.cn
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hannel in which the cross-flow occurs due to pressure gradient
etween the neighbor channels. Feser et al. [13] and Gostick et al.
14] measured in-plane permeability of carbon paper and carbon
loth GDL as a function of compression ratio, and found that the
ermeability of the GDL decreased with the increase of the com-
ression force.

Early work on simulation of fluid flow in the GDL used macro-
copic models based on the volumetric averaging of conservation
quations in an elementary volume assuming a homogeneous
orous medium with a constant permeability, which were solved
umerically by conventional CFD methods [15]. Recently, some
ork on the application of the lattice Boltzmann method (LBM)

o study transport in GDL of PEMFCs have been carried out [16–18].
sing single-phase LBM approach, Wang and Afsharpoya [16] stud-

ed the 2D fluid flow though a section of serpentine channel and a
hannel filled or partially filled with porous medium with appli-
ation to PEMFCs gas flow channel. Joshi et al. [17] used the LBM
o model the mass transport of H2 and the produced H2O (vapor)
n the presence of N2 in the 2D porous anode structure of a solid
xide fuel cell (SOFC). Park and Matsubara [18] studied the gas
ow through a fiber tow in the woven carbon cloth GDL by using
3D LBM approach in solving the Stokes and Brinkman equations
umerically in the void and in the porous tow, respectively. The LBM
sed in [18] is based on the Bhatnagar–Gross–Krook (BGK) model
ith a standard bounce-back boundary scheme for solid bound-

ry condition. The BGK model, which has a single-relaxation-time
SRT) collision operator, suffers from numerical instability and vis-
osity dependence of flow when solid boundary is present [19].
he viscosity dependence problem becomes severe for simulating
ow through porous media. To overcome these deficiencies, the
ultiple-relaxation-time (MRT) model has recently been devel-

ped [19–21], in which different relaxation times are used for
ifferent kinetic modes.

In this paper, the 3D micro-scale flow of liquid transport in
he nonwoven carbon paper GDL is simulated using the MRT/LBM
pproach [19,20]. In-plane and through-plane permeabilities of the
nisotropic GDL are simulated for several samples that are recon-

tructed using the stochastic method [22,23]. The samples with
ifferent porosities and microstructures are achieved to simulate
ifferent GDL compression and PTFE contents and the calculated
ermeabilities are compared with existing measurements [13]. The
umerically obtained relationship between the permeability and

F

Fig. 1. Lattice velocity directi
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he porosity is compared with the previously developed correla-
ions and with fractal models [24,25].

. Description of the simulation model

.1. Multiple-relaxation-time LBM model

The MRT/LBM model transforms the distribution function in
he velocity space of the SRT/LBM model to the moment space
hrough a transformation matrix. Since moments of the distribu-
ion function directly represent physical quantities, the moment
epresentation offers a convenient way to perform the relaxation
ollision processes with different relaxation times according to dif-
erent time scales of various physical processes. In the SRT/LBM

odel, the evolution of the distribution function f˛(x, t) is described
y the following equation:

˛(r+e˛ıt, t+ıt)−f˛(r, t)=S
[
f˛

eq(r+e˛ıt, t+ıt)−f˛(r, t)
]

+F˛ (1)

here S is the relaxation matrix [21], which is a diagonal matrix
ith same diagonal elements in SRT model; e˛ is lattice velocity in

he ˛th direction and the corresponding lattice velocity directions
re shown in Fig. 1. f eq

˛ is the equilibrium distribution of f˛ given as
function of density � and velocity u:

˛
eq = w˛�

[
1 + e˛ · u

c2
s

+ (e˛ · u)2

2c4
s

− u · u
2c2

s

]
. (2)

For the three-dimensions 19-velocity (3DQ19) model, the lattice
elocity e˛ and the weight coefficients w˛ are given as follows:

e˛=
{

(0, 0, 0), ˛=0;
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0 ± 1)c, ˛=1, 2, . . . , 6;
(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c, ˛=7, 8, . . . , 18.

w˛=
{

1/3, ˛ = 0;
1/18, ˛ = 1, 2, . . . , 6;
1/36, ˛ = 7, 8, . . . , 18.

(3)
F˛ in Eq. (1) represents the external force, which is given by [26]

˛ = w˛

[
e˛ − u

c2
s

+ e˛ · u
c4

s

e˛

]
· F (4)

ons of the D3Q19 LBM.
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here F is the external force and cs is the speed of sound which
s given by c/

√
3, where c = �x/�t is the lattice speed and �x is the

attice distance.
By multiplying a transformation matrix Q in Eq. (1), the evolu-

ion function can be expressed in the moment space as

(r+eıt, t+ıt)−m(r, t)=Ŝ
[
meq(r+eıt, t+ıt)−m(r, t)

]
+Q · F

(5a)

here

= Q · f (5b)

nd

eq = Q · feq (5c)

re the vectors of the moments distribution function and its
orresponding equilibrium moments vector, respectively. The
ransformation matrix Q is constructed such that the relaxation

atrix Ŝ in moment space can be reduced to the diagonal form and
s given in [20] for D3Q19 model. As a result, the diagonal relaxation

atrix Ŝ in Eq. (5a) is

= diag(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14,

s15, s16, s17, s18) (6)

here s0 = s3 = s5 = s7 = 0, s1 = s2 = s9–15 = 1/�, and s4 = s6 = s8 =
16–18 = 8((2 − 1/�)/(8 − 1/�)) are propositional values in [19] and
is related to the fluid viscosity � by

= 3�

ıt + 0.5
(7)

Additionally, the equilibrium moments meq are [19]:

eq
0 = � (8a)

eq
1 = −11� + 19

j · j

�0
(8b)

eq
2 = 3� − 11

2
j · j

�0
(8c)

eq
3 = jx, meq

5 = jy, meq
7 = jz (8d)

eq
4 = −2

3
jx, meq

6 = −2
3

jy, meq
8 = −2

3
jz (8e)

eq
9 = 3j2x − j · j

�0
, meq

10 = −3j2x − j · j

2�0
(8f)

eq
11 = j2y − j2z

�0
, meq

12 = − j2y − j2z
2�0

(8g)

eq
13 = jxjy

�0
, meq

14 = jyjz
�0

, meq
15 = jxjz

�0
(8h)

eq
16 = meq

17 = meq
18 = 0 (8i)

here �0 is the mean density of the fluid which is used to reduce
ompressibility effects in the model [19,20].

The macroscopic local density �(x, t) and the momentum j(x, t)
re obtained as

=
18∑

f˛ (9a)

˛=0

= �0u =
18∑

˛=0

f˛e˛ + ıt

2
F (9b)

f

w
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Employing the Chapman–Enskog multiscale analysis for D3Q19
odel, Eqs. (1) and (5) can lead to the Navier–Stokes equations

nder the low Mach number limitation:

∂�

∂t
+ ∇ · (�u) = 0 (10a)

∂(�u)
∂t

+ ∇ · (�uu) = −∇(c2
s �) + ∇ · (��∇u) + F (10b)

here the pressure is given by p = c2
s �.

.2. Boundary conditions

Since the methods developed in the SRT model for boundary
onditions are still applicable in the MRT approach, the moment
istribution function m in the MRT model is transformed to the
istribution function f in the velocity space by

= Q−1m (11)

hen dealing with the boundary conditions.

.2.1. Inlet/outlet boundary
The velocity and pressure boundary conditions at the inlet and

utlet are dealt with using the bounce-back of the non-equilibrium
istribution rule [27]. For the D3Q19 model, for example, if the inlet
oundary face is perpendicular to the x-direction with the lattice
elocity e1, e7, e10, e11 and e14 (as shown in Fig. 1) pointing into the
alculation region, the distribution functions f1, f7, f10, f11 and f14
n these directions are unknown after streaming. These unknown
istribution functions are determined by the rest of the known
istribution functions in order to satisfy the specified boundary
onditions.

According to Eqs. (9a) and (9b), the unknown distribution func-
ion fi(i = 1, 7, 10, 11, 14) at the inlet boundary satisfy the equations
s follow:

1 + f7 + f10 + f11 + f14 = �in − (f0 + f2 + f3 + f4 + f5 + f6 + f8 + f9

+f12 + f13 + f15 + f16 + f17 + f18) (12a)

1 + f7 + f10 + f11 + f14 = �in
ux

c
+ (f4 + f8 + f9 + f12 + f13) (12b)

here the inlet density �in can be obtained by equating the right-
and side of Eq. (12a) to the right-hand side of Eq. (12b) to give:

in = E
1 − ux/c

(13a)

here

= (f0 + f2 + f3 + f5 + f6 + f15 + f16 + f17 + f18 + 2(f4 + f8 + f9

+f12 + f13) (13b)

To close the system of equations, the bounce-back rule for the
on-equilibrium part of the distribution functions fi(i = 1, 7, 10, 11,
4) is applied

i = f eq
i

+ (fi′ − f eq
i′ ) (14)

ith f eq
i

calculated from �in given by Eq. (13) and with i’ denotes
he opposite lattice velocity of i, that is ei = −ei′ . Eqs. (12) and (14)
re sufficient to determine all the unknown fi. However, in order
o keep the correct y- and z-direction momenta, these distribution
unctions are modified as follows [27]:
∗ = fi − (jyeiy + jzeiz)
2

, i = 1, 7, 10, 11, 14 (15)

here jy =
∑18

˛=0f˛e˛y and jz =
∑18

˛=0f˛e˛z .
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Similarly, when the boundary pressure (density) is specified, the
-direction velocity can also be determined by Eq. (12), i.e.,

x = c
[

1 − E
�in

]
(16)

Under the assumption that velocities in y- and z-directions are
ero on the boundary, the unknown distribution functions fi(i = 1,
, 10, 11, 14) can be obtained using Eqs. (14) and (15) as the same as
elocity boundary.

.2.2. Solid boundary
The no-slip condition on the solid boundary can be approxi-
ated using the standard bounce-back boundary conditions, in
hich the liquid particles reflect their directions when colliding
ith the solid wall. However, it has been demonstrated that the
ulti-reflection (MR) boundary, which was developed originally

or solving moving solid boundary problems, is much more accurate

ig. 2. Micrographs of the carbon paper GDL. (a) SEM image of the Toray 060 GDL. (b) 3D ge
arbon paper GDL with 15% PTFE content.
Sources 186 (2009) 104–114 107

than bounce-back rule, especially for porous media flow [19,20]. In
addition, the MR boundary condition utilizes some moment space
parameters, which can be directly obtained in the MRT/LBM model.

After the streaming process, the distribution function out of the
solid is constructed in MR boundary condition as follows:

fi′ (x, t) = k1fi(x + eiıt, t) + k2fi(x, t) + k3fi(x − eiıt, t) + k4fi′ (x, t)

+k5fi′ (x − eiıt, t) + k6Ni′ (x, t)/� (17)

with the coefficients kj (j = 1–6) being functions of the solid bound-
ary location given by [19]

2 2

k1 = 1, k2 = −k4 = 1 − 2q − 2q

(1 + q)2
, k3 = −k5 = q

(1 + q)2
,

k6 = 1

4(1 + q)2
.

ometer of the reconstructed carbon paper GDL. (c) 3D geometer of the reconstructed
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here q is defined as the ratio of the distance between the first
uid node near the wall and the solid wall to the lattice distance.

n Eq. (17) the quantity N is the non-equilibrium term relating to
oments distribution functions m and can be calculated as

= M−1 · Ŝ · (teq − t) (18a)

here t = (0, 0, 0, 0, m4, 0, m6, 0, m8, 0, ..., 0, m16, m17, m18)T is a
ector, having partial elements of the moments m, and

eq = (0, 0, 0, 0, meq
4 , 0, meq

6 , 0, meq
8 , 0, ..., 0, meq

16, meq
17, meq

18)
T

(18b)

The main steps, when applying the MRT/LBM model described
bove, can be summarized as follows:

1. Calculating the equilibrium moments meq from Eq. (8);
. Evolution of the moments distribution function according to Eq.

(5);
. Transforming the moment distribution function m to the veloc-

ity distribution function f by Eq. (11);
. Implementing the streaming process using the velocity distribu-

tion function f and imposing the boundary condition from Eqs.
(12)–(18);

. Updating the local density �(x, t) and the local velocity u(x, t)
according to Eq. (9).

.3. Reconstruction of carbon paper GDL

The reconstruction of 3D porous media can be obtained by two
ethods: the 3D imaging combination and the virtual stochas-

ic generation. The former employs the 3D images of the porous
edium scanned by X-ray or scanning laser microscopy and then

ntegrates them to achieve the geometry construction. The later
econstructs the porous medium microstructure based on the sta-
istical information of the porous medium. The low cost and easy
mplementation of geometry generation make the stochastic gener-
tion method a better choice than the imaging combination method
22]. In the present study, the method proposed by Schladitz et
l. [23] based on the stochastic generation method is adopted to
econstruct the carbon paper GDL.

Fig. 2(a) presents the SEM image of the Toray 060 carbon paper.
n general, an actual carbon paper GDL consists of carbon fibers,
andomly oriented in a plane, leading to different in-plane and
hrough-plane properties. Since the reconstruction of the real GDL
s difficult, some assumptions are made for simplification: (i) car-
on fibers in GDL are cylinders having a fixed and uniform diameter;
ii) fibers are straight and infinitely long; (iii) fibers are allowed
o overlap. In addition, according to fabrication process of carbon
aper, the fibers in the material plane are stochastic arranged, thus
his plane can be considered to be isotropic, and fibers oriented
o the direction of the GDL thickness can be neglected. Giving the
DL size, porosity and fiber diameter D, the reconstruction of car-
on paper is achieved by placing the fibers in a plane with arbitrary
ositions and orientations one layer by one layer. It should be noted
hat the porosity of the reconstructed GDL is achieved in this pro-
ess by making sure the porosity in each layer approximately equal
o the prescribed value. Thus, although the final porosity is not
xactly equal to the prescribed value, but is an acceptable approx-
mation. Fig. 2(b) shows the microstructure of the reconstructed
arbon paper GDL with the size of 150 × 150 × 127 lattice grid and
prescribed porosity of 0.791, where x or y is the in-plane direction

nd z the through-plane direction. This sample is also considered as
he original sample without compression and PTFE in the following
tudy.

The compressed samples are reconstructed under the assump-
ion that the compression process only change the thickness of the

w
a
g
(

Sources 186 (2009) 104–114

riginal samples and does not change the fibers shape. Thus, the
econstruction process is the same as mentioned above, only with
ifferent porosities and thicknesses according to different compres-
ion ratios. The relationship between the compression ratio r and
he porosity � can be expressed as [13]

= 1 − 1 − �0

1 − r
(19)

here �0 is the uncompressed GDL porosity, and r = (h0 − h)/h0 is
efined as the change of the thickness h0 − h after compression
ivided by the uncompressed thickness h0. Thus, r = 0 means no
ompression.

If the PTFE is added on the carbon paper GDL, one more step is
dded after the fiber GDL generation: the pore volume close to the
ber in the sample is randomly filled by the PTFE. This process is
epeated until the prescribed PTFE content is achieved. Thus, the
ores surrounding by more fibers will have more probability to fill
ith PTFE. Fig. 2(c) shows the geometry of the reconstructed GDL
ith 15% PTFE content and the same size of 150 × 150 × 127 lat-

ice grid. The final porosity � can be expressed approximately as a
unction of PTFE content w to give:

= �0 − a
w(1 − �0)

1 − w
(20)

here �0 is the original porosity before PTFE is added, and a = 0.9
s the density ratio of the carbon fiber and the PTFE [7].

. Model validation

To validate the present model, two examples of single-phase
ow will be simulated: (i) fully-developed flow in a rectangular
hannel and (ii) flow through body-centered arrays of spheres. For
he first problem, it is noted that the analytical solution of the veloc-
ty profile in a fully-developed flow in a channel with a rectangular
ross section having width 2a and height 2b is [28]

(x, y) = V0

[
1 −

(
y

b

)2
+ 4

∞∑
i=1

cosh(ˇix/b) cos(ˇiy/b)
cosh(ˇia/b)

]
(21)

ith V0 = b2�p/(2�L) and ˇi = (2i − 1)	/2, i = 1,2, . . ., n, where �p is
he pressure drop over the channel length L, and � is the dynamic
iscosity of the fluid. Fig. 3(a) shows the comparison of velocity
rofile along center line of the longer side obtained from the ana-

ytical solution given by Eq. (21) with prescribed pressure gradient
p/L = 7.5 × 10−3 and � = 17.5, and the LBM simulation for two rect-

ngular channels with the cross section size of 60 × 30 and 80 × 30,
espectively. It is clearly shown that the simulation results are in
xcellent agreement with the analytical solution. The correspond-
ng pressure drop along the channel is presented in Fig. 3(b) which
hows that the average pressure drops linearly along the channel
ength.

The validation of the permeability for flow through body-
entered cubic arrays of spheres will be considered next. In LBM
imulation, the permeability k of the porous medium can be cal-
ulated according to Darcy’s law under the low Reynolds number
ondition

d = k

�
(∇p + F) (22)
here ud is the Darcy velocity as the superficial velocity of the fluid
nd F is the body force acting on the fluid. The permeability k is
enerally described in terms of the porosity �. The Kozeny–Carman
KC) equation is the most widely used semi-empirical relationship,
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Fig. 3. Comparison of the LBM simulation results with the analytical solution (solid
line) for velocity profile of fully-developed flow along the centerline of the longer
s
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o
fiber on the inlet/outlet boundary, five more lattices are added
between the GDL and inlet/outlet boundary. For in-plane flow,
pressure boundaries are specified on the inlet and outlet, respec-
tively (perpendicular faces to x-direction in Fig. 2(b)), and two
ide in two rectangular channels. (a) Flow profile along the centerline of the longer
ide in rectangular channels (with cross sections: ( ) 60 × 30; ( ) 80 × 30). (b)
ressure drop along the channel.

iven by

= C
�3

(1 − �)2
(23)

here C is the Kozeny–Carman constant and C = d2/180 has been
sed for packed-spheres porous media with sphere diameter d.

Fig. 4 shows the comparison of simulation results of the dimen-
ionless permeability k/d2 in the packed sphere porous medium
ith the analytical solutions given by Zick and Homsy [29] and

he KC relation given by Eq. (23). It can be seen that the LBM
imulation results are in good agreement with the analytical solu-
ion for the whole range of �, but the KC relation shows large
rror as the porosity increases because the KC equation was deter-
ined empirically for densely packed spheres with small value

f �.
After this validation, the viscosity effect on the permeability will

ow be compared based on the MRT and BGK models for the recon-
tructed carbon paper GDL (as shown in Fig. 2(b)) with the average

orosity of 0.791. Fig. 5 shows that the dimensionless permeabil-

ties k/D2 calculated by the MRT model are constant for various
iscosities, while the permeability calculated in BGK model is sig-
ificantly increased with the increase of viscosity. Therefore, the
esults from the present MRT model do not suffer from the problem

F
m

ig. 4. Comparison of the LBM simulated permeability with the analytical solution
nd the KC relation for body-centered cubic spheres arrays.

f viscosity dependent permeability, and is capable of simulating
ingle-phase flow through porous media more accurately.

. Results and discussion

In the LBM model, the simulation parameters are in terms of the
attice units that do not have physical units. To relate the physical
pace with lattice space, a length scale l0, a time scale t0 and a mass
cale m0 should be chosen such as l0 = 1.5 × 10−6 m, t0 = 5.0 × 10−7 s,
nd m0 = 5.0 × 10−17 kg in present study. As a result, the physical
arameters of velocity up, pressure pp, and permeability kp can be
alculated from the quantities in lattice system (subscripted by L)
nd the scale parameters as follows:

p = uL
l0
t0

, pp = pL
m0

l0t2
0

, kp = kLl20 (24)

For the reconstructed carbon paper GDL, the fiber diameter
f 7.5 �m is prescribed. In order to reduce the influence of the
ig. 5. Comparison of the permeability computed based on MRT/LBM and BGK/LBM
odels with various viscosities.
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ig. 6. Darcy velocity and permeability as a function of pressure gradient in uncom-
ressed and compressed carbon papers. (a) Darcy velocity vs. pressure gradient. (b)
ermeability at different pressure gradient.

olid boundaries are specified on the top and bottom surfaces (per-
endicular faces to z-direction in Fig. 2(b)), keeping the others
eriodic boundary conditions. For through-plane flow, except for
he pressure boundaries condition on the inlet and outlet (perpen-
icular faces to z-direction in Fig. 2(b)), the rest four faces are all
pecified to be periodic boundary. Additionally, the reproducibility
f the reconstructed GDL must be ensured. In the present study,
ith the GDL size of 150 × 150 × 127 lattice and the length scale

f 1.5 �m, the GDLs are firstly reconstructed four times with the
ame porosity. The differences among the calculated permeabil-
ty of the four GDLs are less than 5%, so the reconstructed GDL
ize (150 × 150 × 127 lattice) can meet the requirement of repro-
ucibility, and the corresponding GDL thickness is 190.5 �m (i.e.,
27 × 1.5 �m), which is the same as the Tory 060 carbon paper
DL.

Fig. 6(a) shows the relationship between the Darcy velocity and
he pressure gradient for the original and 25% compressed GDL
ased on MRT/LBM simulation. It clearly shows that the Darcy
elocity is linearly proportional to the pressure gradient for both
n-plane and through-plane flows within the calculated pressure

radient bound, and the corresponding permeability is almost con-
tant with pressure gradient as shown in Fig. 6(b). Therefore, it can
e said that the Darcy law is valid and the inertial force can be
eglected in flow through carbon paper GDL if the pressure gradient
oes not exceed the bound in this study.

k

w
˛
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.1. Velocity, streamline and pressure distribution

Fig. 7 shows the 3D distribution of velocity, streamline and pres-
ure in the carbon paper GDL obtained from the present MRT/LBM
odel. It is seen that the flow field in GDL is quite complicated for

oth in-plane and through-plane due to the complicated structure
f the GDL. In each slices, the magnitude of the velocity greatly
epends on location of the void space. It can be seen from these
raphs that the main flow path is through larger pores because of
heir small flow resistance, and it can be expected that the pressure
ould drop rapidly at the locations containing dense fibers.

.2. Permeability

It is observed from Fig. 7 that the streamlines in through-plane
ow are a little more tortuous than in-plane flow. This implies that

iquid particles in through-plane flow will detour more obstacles
esulting in larger flow resistance. Thus, the in-plane permeabil-
ty always has a larger value than through-plane in a given carbon
aper GDL as shown in Fig. 8.

.2.1. Effects of compression
The effects of compression ratio (r) on in-plane and through-

lane permeabilities of carbon papers are shown in Fig. 8, where
he in-plane permeability of Tory 060 obtained by Feser et al.
13] and the through-plane permeability of Tory 090 obtained by
ostick et al. [30] are also plotted for comparison purposes. The

n-plane permeability obtained by the present model agrees well
ith measurements by Feser et al. [13], with the divergence less

han 15% in the whole range of compression ratio. On the other
and, no measurements are available in literature for the through-
lane permeability under compression. However, Gostick et al.
30] measured the through-plane permeability for uncompressed
oray 090 to be 8.3 × 10−12 m2 while Mathias et al. [7] measured
he through-plane permeability of uncompressed Toray 060 to be
pproximately in the range of 5–10 × 10−12 m2. The simulated value
f 7.62541 × 10−12 m2 (with no compression for r = 0) falls in the
iddle of these values.
In practice, it is more convenient to describe the permeability as

function of porosity, such as KC relation given by Eq. (23). Since the
C relation was originally determined for granular porous media
nd is applicable only for low porosity materials (as shown in Fig. 4),
herefore, the KC relation does not always predict the correct per-

eability for fibrous media [31], which is similar to carbon paper
DL with high porosities. However, Feser et al. [13] found that KC

elation can accurately describe the permeability of carbon paper
n a narrow porosity range by fitting a proper Kozeny–Carman con-
tant C. On the other hand, Tomadakis and Robertson [32] suggested
hat the permeability–porosity KC relationship (Eq. (23)) of carbon
aper (which has randomly overlapping fiber structure) should be
eplaced by

= C
�

(ln �)2
(25)

Tomadakis and Robertson [32] also proposed a more compre-
ensive relation to predict the anisotropic permeability of in-plane
nd through-plane, based on the 
-base method of Johnson et al.
33]. For randomly overlapping fiber structures, the 
-base relation
s described as [32]
= R2 �(� − �p)˛+2

8 ln2 �(1 − �)˛[(˛ + 1)� − �p]2
(26)

here R is the radius of the fiber, �p the percolation threshold and
a constant depending on the structure and the flow direction.
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F n paper GDL (pressure is normalized to the outlet pressure). (a) Velocity and streamline
f d streamline for in-plane flow. (d) Pressure contous for in-plane flow.
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ig. 7. Lattice Boltzmann simulation results for single-phase flow through 3D carbo
or through-plane flow. (b) Pressure contous for through-plane flow. (c) Velocity an

omadakis and Robertson [32] found that for in-plane and through-
lane flow in carbon paper where the percolation threshold �p is
.11, the constants ˛ in Eq. (26) are 0.521 and 0.785, respectively.
ostick et al. [14] found that Eq. (26) with ˛ = 0.521 fitted the in-
lane permeability data of their carbon paper with fiber diameter
f 9.2 �m very well.

Fig. 9 shows a comparison of the simulated in-plane and
hrough-plane permeabilities of carbon paper with fiber diame-
er of 7.5 �m as a function of porosity with the predicted results
rom the relation given by Eq. (25) and 
-base relation given by
q. (26). For Eq. (25), the fitted constants C are 8.9504 × 10−13 and
.2805 × 10−13 for in-plane and through-plane, respectively. From
he figure, it is shown that Eq. (25) for both in-plane and through-
lane permeabilities match with the simulated results very well.
n the other hand, the 
-base relation is shown to underestimate

he simulated permeability by 35%, although it correctly predicts
he trend of permeability as a function of porosity.
.2.2. Effects of PTFE content
Following the method discussed in Section 2.3, several GDL

amples with different PFTE contents are reconstructed. The simu-
ated in-plane and through-plane permeabilities are presented as a

Fig. 8. Comparison of in-plane and through-plane permeabilities with measure-
ments: ( ) Feser et al. [13]; ( ) Gostick et al. [30].
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ig. 9. Comparison of the LBM simulated in-plane and through-plane permeabilities
ith predictions from Eqs. (25) and (26). (a) In-plane; (b) through-plane.
unction of porosity in Fig. 10. However, the simulated permeabil-
ties do not fit Eq. (25) nor the 
-base relation Eq. (26) very well
nd therefore are not presented. This may be attributed to the more
omplicated structural changes after the PTFE is added. It is obvious

ig. 10. Comparison of the simulation permeability with predictions from Eq. (27).
olid line for in-plane permeability with C = 2.0 and a = 3.7681. Dashed line for
hrough-plane permeability with C = 2.57 and a = 3.1355.
Sources 186 (2009) 104–114

from Fig. 2(c) that the carbon paper is not a pure fibrous structure
with PTFE added due to the formation of PTFE films and blocks
between the fibers. Therefore, a more general empirical formula
[34] is used to fit the simulated results:

k = C�a (27)

where C and a are two constants. It is shown from Fig. 10 that Eq.
(27) with the fitting values of C = 2.0 and a = 3.7681 for in-plane and
C = 2.57 and a = 3.1355 for through-plane, matches with simulated
values well.

4.3. Tortuosity

Generally, tortuosity is defined as the ratio of the flow path
length to the thickness of the porous media along the flow direc-
tion. It is used to calculate the effective diffusivity controlling the
mass transfer ability of reactant in GDL. The Bruggeman equation
[14] has been commonly used for tortuosity prediction in PEMFC
models, which is given by

� = 1
�0.5

(28)

However, Bruggeman equation was determined empirically
from isotropic porous media, and therefore does not reflect the
anisotropic property of carbon paper GDL. Koponen et al. [35]
proposed the following formula for in-plane and through-plane
tortuosity as

� = 1 + a
1 − �

(� − �p)m (29)

where �p is the percolation threshold while a and m are constants.
We now compute the tortuosity of the carbon paper GDL after

the flow field has been determined using the MRT/LBM model. For
this purpose, two alternatives can be used to obtain the tortuos-
ity by computing flow path lengths numerically. One may average
over the actual lengths of the flow lines themselves, and the other
may average the flow lines weighted by flux. The first alternative is
suitable for molecular diffusion while the latter alternative is more
natural for fluid flow in porous media. Both of these tortuosities of
GDL can be calculated based on the following definition formulas
[36]:

�1 = (1/N)
∑N

i=1l(ri)

L
(30a)

�2 =
∑N

i=1(l(ri)/L)u(ri)∑N
i=1u(ri)

(30b)

where N = 1000 is the number of the streamlines used for average;
l(ri) is the length of the streamline starting at ri; L is the thickness
of the porous media along the flow direction; u(ri) is the tangential
velocity at the starting point ri; �1 is the direct average tortuosity;
�2 is the flux-weighted tortuosity. The simulated values of in-plane
and through-plane tortuosities are shown in Fig. 11 as a function
of porosity. It can be seen that (i) the value of tortuosity �1 is
almost the same as tortuosity �2, although �1 is slightly larger espe-
cially at low porosity. This may be due to the narrow range of the
streamline length at high porosity of GDL. (ii) The through-plane
tortuosity is higher than in-plane (also seen in Fig. 7), and (iii) the
Bruggeman equation (represented by a solid line) falls between the

simulated in-plane and through-plane tortuosities. Matching Eq.
(29) with the simulated tortuosities gives a = 0.326 and m = 0.863
for in-plane flow and a = 0.714 and m = 0.543 for through-plane flow,
which was obtained based on the percolation threshold of 0.11 for
carbon paper [32].
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.4. Fractal model for permeability prediction

The fractal theory, as a useful tool to characterize irregular or
isordered objects, has been applied to predict the permeability of
orous media and GDL [37–39]. In these studies, the through-plane
ermeability is expressed as a function of area fractal dimension Df
nd tortuosity fractal dimension Dt, which are rather difficult to
e determined using the box-counting method by analyzing SEM

mages of the GDL.
In this section, the fractal model will be used to predict the per-

eability of carbon paper GDL using the relationship of tortuosity
nd porosity obtained in Section 4.3. Yu and Li [38] have proposed
relationship between porosity and area fractal dimension Df as

=
(

�min

�max

)dE−Df

(31)

here dE is Euclid dimension; �min and �max are the minimum and
aximum pore sizes in GDL with their ratio assumed to be 10−2 in

he following study.
The permeability of GDL based on fractal model [37,39] can be

xpressed as follows:

= 	L1−Dt
0 �3+Dt

max

128A

Df

3 + Dt − Df
(32)

here L0 is the representative length along the flow direction and
is the section area perpendicular to flow direction which can be
ritten as [39]

=
	�2

max

[
1 −

(
�min/�max

)2−Df
]

4�

Df

2 − Df
(33)

Substituting Eqs. (33) and (31) with dE = 2 into Eq. (32) gives

= L1−Dt
0 �1+Dt

max

32

[
2 − Df

3 + Dt − Df

]
�

1 − �
(34)

On the other hand, the flux-weighted tortuosity in fractal model

an be obtained as follows:

=
∫ �max

�min
(L(�)/L0)q(�)f (�) d�∫ �max

�min
q(�)f (�) d�

= 3 + Dt − Df

4 − Df

(
L0

�max

)Dt−1
(35)
Sources 186 (2009) 104–114 113

where f (�) = Df�Df
min�−(Df +1) is the pore number probability den-

sity with diameter �; q(�) = (	�p/128�L(�))�4 is the flow rate
through a capillary tube of diameter �; L(�) = L0�1−Dt bases on the
fractal theory.

Combining Eqs. (34) and (35), the tortuosity fractal dimension
Dt disappears, thus the permeability can be expressed in terms of
the tortuosity as

k = �2
max

32�

2 − Df

4 − Df

�

1 − �
(36)

where the maximum pore size �max can be estimated for the regular
fiber structure for through-plane flow [37]:

�max =
√

4�

	(1 −
√

�)
2

d (37)

with d being the diameter of carbon fiber. Thus, if Eq. (31) is used
to determine Df, the permeability of GDL is a function depending
only on the tortuosity and porosity, which is deduced from the
fractal model. The predicted through-plane permeabilities given
by Eq. (36) with the tortuosity given by Eq. (29) with a = 0.714
and m = 0.543 for through-plane is plotted in Fig. 9(b). As shown
from this figure, the through-plane permeability predicted from
the fractal model is very close to KC relation. However, the frac-
tal model described above cannot accurately predict the in-plane
permeability of carbon paper GDL. This may be attributed to the
non-representative fractal characteristics of the cross section per-
pendicular to the in-plane flow direction.

5. Concluding remarks

In this work, the single-phase flow through the carbon
paper GDL with anisotropic permeabilities is simulated using
the MRT/LBM model. The GDL samples are reconstructed using
the stochastic method by considering different porosities and
microstructures to imitate different GDL compression ratios and
PTFE contents. In-plane and through-plane permeabilities as well
as the tortuosity are calculated from the flow field by simula-
tion. The simulated permeabilities match well with the existing
measurements in literature. The calculated permeabilities are also
compared with empirical relationships, which predict the perme-
ability as a function of porosity and some fitting parameters are
determined. In addition, the tortuosity of the carbon paper GDL
obtained from simulation also shows the anisotropic characteristic
with through-plane tortuosity higher than in-plane. The tortuosity
is used in a fractal model to predict the through-plane permeabil-
ity, and the results indicate that the through-plane permeability
of carbon paper GDL based on the fractal model and the KC rela-
tion are in good agreement with each other. Compared with the
SRT/LBM approach, the results of this paper show that the MRT/LBM
approach has the advantages of numerically more stable and vis-
cosity independent when solid boundary is present. Therefore, the
MRT/LBM approach is more suitable for simulating flow in porous
media at the pore level. Furthermore, because of its kinetic nature,
the LBM method is a particularly suitable method to study multi-
phase and multicomponent flow problems in porous media, which
are currently encountered in fuel cell researches. Actually, a few
complete LBM simulations [40,41] for single-phase multicompo-

nent flow in solid oxide fuel cells had already been performed.
To our knowledge, however, due to the difficulties of simulating
multicomponent transport coupling with two-phase transport in
PEMFCs, such simulations of PEMFCs are not presented in the liter-
ature and further efforts are required in future.
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